Phase I trial of TG02 plus dose-dense or metronomic temozolomide for recurrent anaplastic astrocytoma and glioblastoma in adults

Jing Wu1, Christine Bryla1, Yu-Ting Su, Ewa Grajbowska1, Ann McCoy2, Lisa Boris1, Ramya Antony1, Nancy Garrett1, Christine Siegel1, Christine Cardova1, Orwa Aboud2, Tracy Lawhorn3, Marta Panos-Panos1, Brett Theeler2, Terrri Armstrong4, Jing Yuan5, and Mark Gilber6

1Neuro-oncology branch, National Cancer Institute, Clinical Cancer Research, 2Walter Reed National Military Medical Center, 3University of Texas MD Anderson Cancer Center 4Adastra Pharmaceuticals, Inc.

Background
Most therapies for recurrent high grade gliomas are not successful, largely due to the complexity of the disease.
TG02 is a multi-kinase inhibitor with the primary effect on CDK9 activity, inhibiting transcriptional progress. TG02 has been investigated preclinically and clinically in hematologic malignancy, suggesting anti-glioma effects and good blood-brain barrier penetration.
TMZ has proven efficacy in glioblastoma, but is limited by resistance mechanisms. Our preclinical studies have demonstrated the anti-glioma effects of TG02 and the synergy with TMZ through modulation of transcription and metabolism. We hypothesize that the given multiple mechanisms of TG02 and established efficacy of TMZ, combined treatment may be effective for malignant gliomas. A phase I/II trial was launched and herein we report the results of the MTD finding part of the phase I trial.

Objectives
Primary Objectives
To determine the maximum tolerated dose (MTD) of TG02 plus TMZ using both Dose-dense (DD) and metronomic (MN) TMZ in adult with recurrent anaplastic astrocytoma or glioblastoma.

Secondary Objectives
To select the treatment regimen with better PFS4 between TG02 plus TMZ or TMZ at each of the MTDs following cohort extension.
To perform pharmacokinetic and pharmacogenomic studies of TG02 once the MTD is determined in each cohort.

Eligibility Criteria
- Adults with recurrent anaplastic astrocytoma (AA) or glioblastoma
- KPS ≥ 60
- Adequate organ functions
- No more than 2 prior relapses for phase I part
- No prior treatment with bevacizumab as tumor treatment
- Tumor tissues available for review to confirm the histologic diagnosis and molecular profiling

Study Design
- Phase I study is designed to be conducted in two stages: MTD finding and cohort extension, in two treatment arms: Dose-dense (DD) and metronomic (MN), with dose escalation of TG02. The maximum number of cycle is 12.
- MTD finding part: TMZ with two alternate schedules (DD and MN) in combination with TG02 will be administered.
- A Bayesian Optimal Interval design was employed to determine the MTD and the toxicity profile of treatments.
- A cohort extension of both arms will be performed at each MTD and the treatment arm with a better response will be selected for the combination treatment arm for Phase II.
- Pharmacokinetic, pharmacogenetic studies and neutrophil analysis will be performed during the cohort extension of both arms.

Study treatment 28-days cycles

Objectives

- **Primary Objectives**
 - To determine the maximum tolerated dose (MTD) of TG02 plus TMZ using both Dose-dense (DD) and metronomic (MN) TMZ in adult with recurrent anaplastic astrocytoma or glioblastoma.
- **Secondary Objectives**
 - To select the treatment regimen with better PFS4 between TG02 plus TMZ or TMZ at each of the MTDs following cohort extension.
 - To perform pharmacokinetic and pharmacogenomic studies of TG02 once the MTD is determined in each cohort.

Eligibility Criteria

- Adults with recurrent anaplastic astrocytoma (AA) or glioblastoma
- KPS ≥ 60
- Adequate organ functions
- No more than 2 prior relapses for phase I part
- No prior treatment with bevacizumab as tumor treatment
- Tumor tissues available for review to confirm the histologic diagnosis and molecular profiling

Study Design

- Phase I study is designed to be conducted in two stages: MTD finding and cohort extension, in two treatment arms: Dose-dense (DD) and metronomic (MN), with dose escalation of TG02. The maximum number of cycle is 12.
- MTD finding part: TMZ with two alternate schedules (DD and MN) in combination with TG02 will be administered.
- A Bayesian Optimal Interval design was employed to determine the MTD and the toxicity profile of treatments.
- A cohort extension of both arms will be performed at each MTD and the treatment arm with a better response will be selected for the combination treatment arm for Phase II.
- Pharmacokinetic, pharmacogenetic studies and neutrophil analysis will be performed during the cohort extension of both arms.

Study treatment 28-days cycles

- **TG02**
 - Dose-escalation, starting dose 200mg PO
 - On days -3, 1, 12, 15, and 26 in cycle 1, and On days 1, 12, 15, and 26 in cycle 2 and after
- **TMZ**
 - DD arm: 125mg/m²/day 7on/7off
 - MN arm: 50mg/m² daily

Results

Table 1. Patient characteristics (n=40)

<table>
<thead>
<tr>
<th>Arm</th>
<th>No. Patient</th>
<th>Female/Male</th>
<th>Age (median)</th>
<th>KPS (median)</th>
<th>GBM/AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD Arm</td>
<td>19</td>
<td>6/13</td>
<td>50.8</td>
<td>90</td>
<td>10/9</td>
</tr>
<tr>
<td>MN Arm</td>
<td>21</td>
<td>6/15</td>
<td>50.6</td>
<td>90</td>
<td>17/4</td>
</tr>
</tbody>
</table>

Table 2. MTD Determination

<table>
<thead>
<tr>
<th>Arm</th>
<th>On days 1, 12, 15, 26</th>
<th>TMZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>250</td>
<td>125mg/m²/day, 7on/7off</td>
</tr>
<tr>
<td>MN</td>
<td>250</td>
<td>50mg/m² daily</td>
</tr>
</tbody>
</table>

Table 3. MTD Determination

<table>
<thead>
<tr>
<th>Arm</th>
<th>TG02 mg</th>
<th>Reason for off-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>200</td>
<td>G3 diarrhea</td>
</tr>
<tr>
<td>MN</td>
<td>200</td>
<td>G4 neutropenia</td>
</tr>
<tr>
<td>DD</td>
<td>250</td>
<td>G3 ALT elevation</td>
</tr>
<tr>
<td>MN</td>
<td>250</td>
<td>G3 ALT fatigue</td>
</tr>
<tr>
<td>DD</td>
<td>300</td>
<td>G4 febrile neutropenia</td>
</tr>
<tr>
<td>MN</td>
<td>300</td>
<td>G4 ALT elevation</td>
</tr>
</tbody>
</table>

Table 4. DLT analysis

<table>
<thead>
<tr>
<th>Arm</th>
<th>No. pt with DLT/pt. at each level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>200</td>
<td>G3 diarrhea</td>
</tr>
<tr>
<td>MN</td>
<td>200</td>
<td>G4 neutropenia</td>
</tr>
<tr>
<td>DD</td>
<td>250</td>
<td>G3 ALT elevation</td>
</tr>
<tr>
<td>MN</td>
<td>250</td>
<td>G3 ALT fatigue</td>
</tr>
<tr>
<td>DD</td>
<td>300</td>
<td>G4 febrile neutropenia</td>
</tr>
<tr>
<td>MN</td>
<td>300</td>
<td>G4 ALT elevation</td>
</tr>
</tbody>
</table>

A. Baseline B. Post cycle 2

Figure 1. MRIs of a GBM patient from each treatment arm, DD arm (A) and MN arm (B) at baseline and post treatment.

Figure 2. Bar graph representing the numbers of cycles that were completed by each subject in DD (green, n=18) and MN (yellow, n=20) arms. Arrow indicates a patient currently on treatments. Stars indicate the patients completed study treatments.

Conclusions

- Combined therapy with TG02 and TMZ are tolerable and feasible in recurrent AA and glioblastoma.
- MTD of TG02 is 250mg with DD TMZ or MN TMZ (Table 3).
- All patients with DLT recovered and continued on study treatment after dose reduction (Table 2).
- Four patients (10%) have completed 12 cycles of treatments with prolonged disease control.
- Ten percent of patients demonstrated tumor volume reduction on MRIs.
- These results demonstrated the safety and treatment efficacy of the TG02/TMZ combination in refractory AA and glioblastoma and prompting creation of the name zotiraciclib and plans for a randomized clinical trial.

Future Directions

- Cohort extension at MTD for both arms is now enrolling.
- Neutrophil analysis will be perform to study the transient neutropenia that was observed in study patients.